SEMI-METALLIC, STRONG CONDUCTIVE POLYMER MICROFIBER, METHOD AND FAST RESPONSE RATE ACTUATORS AND HEATING TEXTILES

Number of patents in Portfolio can not be more than 2000

United States of America Patent

SERIAL NO

15525005

Stats

ATTORNEY / AGENT: (SPONSORED)

Importance

Loading Importance Indicators... loading....

Abstract

See full text

A method comprising: providing at least one first composition comprising at least one conjugated polymer and at least one solvent, wet spinning the at least one first composition to form at least one first fiber material, hot-drawing the at least one fiber to form at least one second fiber material. In lead embodiments, high-performance poly(3,4-ethylenedioxy-thiophene)/poly(styrenesulfonate) (PEDOT/PSS) conjugated polymer microfibers were fabricated via wet-spinning followed by hot-drawing. In these lead embodiments, due to the combined effects of the vertical hot-drawing process and doping/de-doping the microfibers with ethylene glycol (EG), a record electrical conductivity of 2804 S·cm−1 was achieved. This is believed to be a six-fold improvement over the best previously reported value for PEDOT/PSS fibers (467 S·cm−1) and a twofold improvement over the best values for conductive polymer films treated by EG de-doping (1418 S·cm−1). Moreover, these lead, highly conductive fibers experience a semiconductor-metal transition at 313 K. They also have superior mechanical properties with a Young's modulus up to 8.3 GPa, a tensile strength reaching 409.8 MPa and a large elongation before failure (21%). The most conductive fiber also demonstrates an extraordinary electrical performance during stretching/unstretching: the conductivity increased by 25% before the fiber rupture point with a maximum strain up to 21%. Simple fabrication of the semi-metallic, strong and stretchable wet-spun PEDOT/PSS microfibers can make them available for conductive smart electronics. A dramatic improvement in electrical conductivity is needed to make conductive polymer fibers viable candidates in applications such as flexible electrodes, conductive textiles, and fast-response sensors and actuators.

Loading the Abstract Image... loading....

First Claim

See full text

Family

Loading Family data... loading....

Patent Owner(s)

Patent OwnerAddress
KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGYTHUWAL 23955-6900

International Classification(s)

Inventor(s)

Inventor Name Address # of filed Patents Total Citations
LI, Er Qiang Thuwal, SA 1 4
LUBINEAU, Gilles Thuwal, SA 16 12
MULLE, Matthieu Thuwal, SA 1 4
THORODDSEN, Sigurdur Thuwal, SA 1 4
ZHOU, Jian Thuwal, SA 432 3585

Cited Art Landscape

Load Citation

Patent Citation Ranking

Forward Cite Landscape

Load Citation